
Flow behaviour of entangled surfactant micelles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 9167

(http://iopscience.iop.org/0953-8984/8/47/006)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 04:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/47
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 9167–9176. Printed in the UK

Flow behaviour of entangled surfactant micelles

M E Cates
Department of Physics and Astronomy, University of Edinburgh, JCMB, King’s Buildings
Mayfield Road, Edinburgh EH9 3JZ, UK

Received 24 July 1996

Abstract. Many viscoelastic surfactant solutions contain giant, self-assembled micelles. These
can be described as ‘living polymers’, whose chains are subject to reversible scission and
recombination. Their dynamics in the entangled regime is accordingly modified from the
reptation picture for conventional polymer chains. For rapid scission kinetics, the linear
viscoelastic spectrum approaches a single-exponential (Maxwell) behaviour: small departures
from this can be measured, and the model used to deduce information both on the micellar
kinetics (the lifetime of a typical micelle before breaking) and on the structure (the mean micelle
length). These ideas work for several systems, but for others, unreasonable trends for these
quantities are found. The most likely reason for this is micellar branching effects, which (as
far as the reptation–reaction model is concerned) introduce an effective micellar length equal
to the mean distance between branch points. Another possible discrepancy comes from the
breakdown of mean-field averaging for the micellar reactions. The reptation–reaction model
yields a non-linear constitutive equation which shows a non-monotonic dependence of stress on
strain rate, in simple steady shear. This leads one to expect flow instabilities, and (with further
assumptions) suggests that steady shear-banded flows should arise, in which macroscopic layers
of fluid of different shear rates coexist. Several experimental observations support this general
picture, although the same instability could instead lead to wall slip, or unsteady flows.

1. Introduction

Surfactant molecules in solution have a strong tendency to aggregate reversibly into extended
structures. Depending on the local molecular geometry, the basic packing unit can range
from a small sphere (conventional micelles), through long, sometimes flexible cylinders
(giant micelles), on to bilayers (e.g. smectic phases). For a recent review, see [1]. The
parameters controlling this sequence mainly involve the relative sizes of the polar head group
and the hydrophobic tail [2]. In what follows, we assume the preferred packing geometry
to be a semiflexible cylinder and discuss the dynamics of the resulting giant micelles. Like
most isotropic phases of surfactants, these are in full thermodynamic equilibrium.

Giant micelles can be viewed as one of a larger group of systems: ‘living polymers’
which are reversibly polymerizing chain-like objects that arise in equilibrium through self-
assembly of smaller units. In the case of giant micelles, the diameter of our ‘polymer’ is
of order 3 nm and a typical persistence length is 15 nm. The contour lengthL is variable,
governed by thermodynamic equilibrium, and in some systems extremely large (up to about
1 mm). For reviews, see [3–6], which contain many important references omitted below.

We suppose the number per unit volume of chains of arc-lengthL to be c(L), and
choose units so that the ‘volume fraction’ is the same as the arc-length density:

φ =
∫ ∞

0
Lc(L) dL. (1)
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Then the gaussian size of a chain (which is a random walk) is given byL1/2, with a prefactor
(which we ignore) dependent on the local chain geometry. The packing energy of a chain
can be written asAL+E, where the term linear inL comes from the body of the chain and
the constant termE is that required to create two chain ends (i.e., hemispherical end-caps
in the case of micelles). This is typically 5–25 kT. We have in the Flory–Huggins approach
the following free-energy density [7]:

F =
∫ ∞

0
c(L) [kT ln c(L) + E + AL] + Fint (φ). (2)

Here the final term arises from interactions between micelles. Insofar as this depends only
on the total concentrationφ it has no impact on the size distribution and may be dropped.
Minimizing F at fixedφ gives the size distribution

c(L) ' e−E/kT e−L/L̄ (3)

where L̄ = φ1/2eE/2kT . Thus we have a broad distribution of chain lengths with a mean
that increases slowly withφ, and rapidly withE. Slightly different results are obtained if
excluded-volume correlations are included [8].

2. Kinetics of micelles

In a system of living polymers, the chains can break and recombine reversibly. Various
mechanisms are possible.

(i) Reversible scission: a chain breaks randomly anywhere along its length. The reverse
reaction is end-to-end fusion.

(ii) End interchange: the end of one chain attacks the central part of another. The
reverse reaction is the same process.

(iii) Bond interchange: two chains swap a central bond via a four-armed intermediate.
The reverse reaction is the same process.

Other mechanisms, such as the shedding of individual surfactant molecules from a
micelle (leading to infinitesimal length changes) are important for small micelles but not
giant ones—because their effect on the size of a large object is very small compared to that
of the processes listed above.

The kinetics can be probed experimentally by the temperature-jump method [9, 10]. If
the temperature is suddenly changed (e.g. by a capacitor discharge),L̄ is altered andc(L)

must relax to the new distribution. The relaxation is probed by light scattering which is
(weakly) sensitive to the size distribution. Expanding perturbatively for a small jumpε gives
1c(L, t = 0) = ε (L − L̄) exp[−L/L̄]. To calculate the time evolution one must substitute
this into suitable kinetic equations describing the mechanisms (i)–(iii) above. For example
in reversible scission one has the mean-field kinetic equation for the size distribution

ċ(L) = −k1Lc(L) + 2k1

∫ ∞

L

c(L′) dL′ + 1

2
k2

∫ ∞

0
c(L′)c(L − L′) dL′ − k2

∫ ∞

0
c(L′) dL′.

The first term represents scission of chains of lengthL, the second scission of chains of
length L′ > L (to give a chain of lengthL), the third is the combination of two smaller
chains to make one of lengthL, and the fourth term represents loss of chains of lengthL

by combination with another chain. The rate constants must obeyk1/k2 = e−E/kT , imposed
by demanding that the steady-state solution corresponds to the thermodynamic equilibrium
distribution. Linearizing the above kinetic equation and solving with the appropriate initial
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condition gives an exponential decay with rate constant 2/τb [10]. Here τb = 1/k1L̄

is the waiting time for a break on a chain of the mean length. End interchange and bond
interchange have similar kinetic equations. However, in both cases, theT -jump corresponds
to a ‘zero mode’: the perturbation1c(L, 0) does not decay in time [11, 12]. The presence
of a zero mode is linked in each case to the fact that the reaction scheme preserves the total
number of chains in the system. This means that in these systems, theT -jump experiment
does not measure the mean breaking time, although this remains the most important kinetic
parameter.

The main problem with theT -jump method is that the relevant signal (usually a change
in the static light scattering) becomes very small in the entangled regime. Such scattering
measurements, for the same reason, cannot be used directly to detectL̄. Clearly, some
other method is needed to get unambiguous structural and kinetic information for micelles
in the entangled regime. It turns out that the study of small-amplitude flow behaviour is
well adapted to this role.

The kinetic scheme written above for reversible scission, and similar ones that we have
studied for the interchange processes [11, 12], are based on simple mean-field assumptions.
In essence, we assume that a given chain end, formed in (say) a scission reaction, is more
likely to recombine in due course with an end of an independent chain, than with the very
same end that it split away from in the original scission event. This can break down under
certain conditions [13], discussed further below.

3. Polymer dynamics

The dynamics of unbreakable chains is nowadays understood in terms of the tube model.
This describes motion at scales larger than the tube diametera ∼ L

1/2
e whereLe is the

‘entanglement length’ (the contour length of a marginally entangled chain). To model the
entangled state, each chain is imagined confined to a tube of radiusa [14]. The tube
has NT = L/Le ‘tube segments’, arranged in a random walk, each having1s ' Le

monomers. The chain can diffuse only along the axis of the tube by ‘reptation’; as it
emerges, a new tube is created. There is a curvilinear diffusion constantDc(L) ∼ 1/L, this
proportionality arising because the frictional drag on a chain is proportional to its length.
The chain conformation is fully relaxed on the time-scale for complete escape from the
tube. This requires curvilinear diffusion over a lengthL, and hence the relaxation time
scales asτrep ∼ L3. Typical reptation times for long, unbreakable chains are 0.1 s–1 h.

We consider a set of chains in a volumeV and coarse-grain into subunitsi of length
1s = Le, each with an end-to-end vector1ri . Each contributes(pi)β(fi)α to the
elastic stress tensorσαβ in our material, whereα, β are cartesian indices. The quantity
(p)β = 1rβ/V is the probability per unit area that a subunit crosses a given plane
perpendicular toβ, whereasfα = kT 1rα/1s is the thermodynamic force (spring tension)
in the subunit. Hence the total contribution is

σ
pol

αβ = kT

V

∑
i

1rβ 1rα

1s
. (4)

In practice, the stress tensor also has contributions from the isotropic pressureP and from
velocity gradients in the solvent:σαβ = σ

pol

αβ + σ sol
αβ + Pδαβ .

The simplest rheological measurements involve the linear viscoelastic response of a
material to small deformations. Consider, for example, an imposed strain,x → x + γy,
with γ the strain angle (assumed small) suddenly imposed at time zero and then held
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constant. The response is

σxy(t) = γG(t) (5)

where we can writeG(t) = G0µ(t) as the product of an instantaneous shear modulus (the
plateau modulus) and a memory functionµ(t). In a polymeric system, the stress will not
fully decay until chains have had time to relax their contribution to the stress tensor by
adapting their configurations to the strained shape of the sample. A related experiment
examines oscillatory shear,γ = γ0eiωt , for which the stress is

σxy(t) = G∗(ω)γ (6)

with G∗(ω) = G′(ω) + iG′′(ω) whereG′, G′′ are called the storage modulus and the loss
modulus. Linear response theory shows that

G∗(ω) = iω
∫ ∞

0
G(t)e−iωt dt. (7)

An example is the Maxwell fluid,µ(t) = e−t/τ which has

G′(ω) = G0ω
2τ 2

1 + ω2τ 2
G′′(ω) = G0ωτ

1 + ω2τ 2
. (8)

When plotted in the ‘Cole–Cole’ representation (a plot ofG′′ versusG′ with frequency
parametrically eliminated) this gives a perfect semicircle. Remarkably, many entangled
micellar systems approximate very closely the idealized Maxwell response. This is not true
for normal polymeric samples (especially with a spread of chain lengths present).

Under most conditions [14] the stress formula (4) for gaussian chains can be written as

σ
pol

αβ = (φ/Le) kT Wαβ (9)

whereWαβ = 〈uαuβ〉 (the average is over tube segments, andu is a unit tangent to the
tube). In an undeformed state,Wαβ = δαβ/3 which contributes an irrelevant pressure term.
If a step strainγ is now applied, we have the instantaneous deformationu → u+δu where
δu = (γ uy, 0, 0). A simple calculation then shows

σxy(t = 0+) = G0γ (10)

where G0 = (4/15)(φ/Le)kT is the plateau modulus. In practice, this serves as an
operational definition of the entanglement length.

As time proceeds, each chain escapes by curvilinear diffusion from its tube. A new tube
is created as the chain moves, but this is in isotropic equilibrium in the strained environment.
Henceµ(t) is the fraction of thet = 0 tube through which neither chain end has passed,
up to time t . This is found by imagining the tube diffusing relative to a fixed chain, and
studying the survival probability of a labelled tube segment. This ‘particle’ diffuses at
a rateDc and is killed when it meets either end of the chain on which it resides. The
result is a fairly monoexponential relaxation [14]. However, if one has a distribution of
chain lengths, the relaxation spectrum can be estimated (at the crudest level) by taking the
weighted average

µ̄(t) '
∫

Lc(L) µL(t) dL
/ ∫

Lc(L) dL. (11)

For micellar systems, with an exponential size distribution, this would predict an extremely
non-exponential decay. A variety of more sophisticated estimates lead to the same basic
conclusion.
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4. Linear viscoelasticity of giant micelles

On instantaneous deformation, living polymers behave just as ‘dead’ ones do, and the
plateau modulus isG0 = (4/15)φ/Le as before. To describe the subsequent relaxation,
we now have two time-scales:τb and τrep characterizing micellar reactions and diffusion
respectively. Whenτb � τrep there is no direct effect of breaking reactions and a formula
like (11) can be used. This givesµ(t) ∼ exp[−(t/τrep(L̄))1/4]. This sort of decay has been
reported in certain systems [15]. More commonly, however, entangled micelles approach the
ideal limit of the Maxwell fluid:µ(t) ∼ e−t/τ . This in fact corresponds to the fast-breaking
limit, τb � τrep.

In this limit, the relaxation functionµ(t) can be calculated numerically from a one-
dimensional stochastic model in which a randomly chosen tube segment diffuses relative to
a chain. As in the unbreakable-chain calculation, the particle is absorbed upon reaching a
chain end andµ(t) is its survival probability. The chain length is now a function of time,
however, and the chain ends make discrete jumps corresponding to reactions in which parts
of the chain are removed and other parts added. The rate constants for these processes can
be determined from the kinetic equations according to any of the three schemes discussed
above. Forτb � τrep, a monoexponential relaxation is indeed approached with a relaxation
time τ that varies as(τbτrep)1/2 for reversible scission and end interchange, but asτ

1/3
b τ

2/3
rep

for bond interchange [16, 11, 12]. The physical origin of monoexponential behaviour is a
separation of time-scales: the stress relaxation timeτ remains large compared toτb when
τb � τrep. Many reactions occur on a given chain before a typical tube segment is relaxed;
this gives a fast averaging effect on the time-scaleτb within which the various tube segments
become mixed up with one another. Correspondingly, each sees an average decay and all
tube segments relax with the same rate.

Corrections to the monoexponential behaviour can be computed numerically from the
‘reptation–reaction model’ as defined above. These yield direct information on the parameter
ζ̄ ≡ τb/τ . For values less than 0.1 the Cole–Cole plot is semicircular, with strong departures
for values of order unity. Experimentally, measuringτ and the shape of theG∗(ω) spectrum
allowsτb to be estimated. For example in aqueous CTAB/KBr (0.3 M /0.25 M),τ = 95 ms
and the spectrum suggestsζ̄ = 1.2. Thusτb is estimated as 115 ms, in good agreement
with an independent estimateτb = 110± 40 ms from theT -jump [9].

Further corrections to the Maxwell spectrum arise at high frequencies. These can be
analysed in terms of ‘breathing’ and ‘Rouse modes’ which involve the dynamics of a chain
on time-scales too short to be fully described by the tube model. The analysis of Granek
(see [17]) predicts a minimum value of the loss modulus, obeying (in the crudest approach)
G′′

min/G0 ' Le/L̄. This can be used to get an absolute estimate of the chain lengthL̄ from
viscoelastic data. The value ofL̄ found in this way should show an increasing trend with
concentration. This trend is seen, for example, in the system CTAC/NaSal/NaCl [18] with
a fixed CTAC/NaSal ratio. At 0.1 M NaCl,̄L is in the range 0.5–1µm and increasing with
φ. However, at higher salinity (NaCl = 0.25 M) a decreasing trend is seen instead. Various
data on other systems suggest that this scenario is fairly common in systems at high salt
levels (see e.g. [5]).

It is expected that salt, which suppresses end-caps, should also favour crosslinks and
these data have been taken of evidence of branching. The impact of reversible crosslinks
on the reptation–reaction model has been examined by Lequeux [19]. He considered
‘unsaturated’ networks (with relatively few crosslinks) for which a section of chain between
crosslinks can still be considered as confined to a tube. Relaxation again requires the section
of chain to break, at a point near enough to a given tube segment that the new end can pass
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through it before reacting with something else. Lequeux showed that the main effect of
crosslinking was through the curvilinear diffusion constantDc for a chain end. Remarkably,
this is enhanced, rather than reduced, by the presence of reversible links:D

eff
c ∼ 1/L̄s ,

where L̄s 6 L is the mean strand length between crosslinks. To incorporate Lequeux’s
result, we need only make the replacementL̄ → L̄s in our previous discussion. The latter
is likely to be a decreasing function ofφ at a fixed salt level, which would explain, in broad
terms, the anomalous data on CTAC at high salinity mentioned above.

The recent work of O’Shaughnessy and Yu [13] shows that, like branching, the
breakdown of mean-field theory can lead to significant alterations to the basic picture.
These authors argued that correlated reactions occur, in reversible-scission systems, when
τb (as calculated within mean-field theory) is less than or comparable toτh, the mean time
taken to diffuse a distanceh which is the mean separation between chain ends in the system.
For τb 6 τh, ends repeatedly recombine with their previous partners until a fully effective,
uncorrelated break occurs on the time-scaleτh. Accordingly,τh takes over as the effective
breaking time of the system. Note that this mechanism applies only to reversible scission:
similar corrections are not expected for the other reaction schemes. The correlated reaction
scenario can lead, under some conditions, to a relaxation spectrum which is qualitatively
different from that based on mean-field kinetics [13].

5. Non-linear viscoelasticity

The linear response theory outlined above is restricted to the limit of small deformations.
For general flows, we seek aconstitutive equationor functional relationshipσαβ(t) =
f

[
Kαβ(t ′ < t)

]
, whereKαβ = ∇αuβ is the velocity gradient or rate-of-deformation tensor.

The deformation of a vector due to flow between timest ′ and t is rα(t) = Eαβ(t ′, t)rβ(t ′)
where the tensorEαβ(t ′, t) will from now on be written asEt ′t . This obeys

Et ′t = exp

[∫ t

t ′
Kαβ(t ′′) dt ′′

]
(12)

so ṙ = K · r.
Consider now the birth and death of tube segments [20]. In the linear region, we have

the survival functionµ(t) = e−t/τ corresponding to a death rate for tube segmentsD = 1/τ .
Here the Maxwell limit has been taken. By conservation, this is balanced by a birth rate
B = 1/τ . These rates are modified, however, in non-linear flows. The main effect is called
retraction [14]. If a random walk is subject to a finite deformation, it increases in length
by a factor

L′/L = 〈|E · u|〉0 (13)

where the subscript 0 denotes the average over an isotropic distribution,P0(u) = 1/4π .
This stretching effect is compensated by a fast motion in which the chain shrinks back down
its tube to restore the original tube length. This causes segments to die at an additional rate
[14]

v = 1

L

∂L

∂t
= W :K. (14)

The ratev is positive in almost all flows [14], and we assume that applies here. For a
non-linear flow, we may approximateB andD by

B = 1/τ (15)

D = 1/τ + v(t) (16)
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To get a constitutive equation we must find the contribution to the second-moment matrix
W , at the present time (t) due to a segment created earlier, at timet ′. Such a segment
was created isotropically (with probability distributionP0(u)) but has been deformed by
the flow. Its new length is|Et ′t · u| and its unit tangent is

u′ = Et ′t · u

|Et ′t · u| . (17)

The mean contribution toW from this portion of tube, if it survives, is [20]

Q̂t ′t =
〈
Et ′t · u Et ′t · u

|Et ′t · u|
〉

0

. (18)

To calculate the stress at timet , we now need only computeW (t) as the sum over
contributions from segments born earlier:

W (t) =
∫ t

−∞
B(t ′) exp

[
−

∫ t

t ′
D(t ′′) dt ′′

]
Q̂t ′t dt ′ (19)

where the exponential factor is the survival probability between timest ′ and t .

Figure 1. A schematic diagram of the curve of shear stress versus strain rate in steady shear
flow for an entangled micellar system.

Bearing in mind the relation between the (polymeric) stressσαβ and Wαβ given
previously, this completes the constitutive equation we seek. This can be solved in simple
flows, such as steady shear at strain rateγ̇ [21]. For the polymeric shear stressσpol

xy (γ̇ )

one finds a curve which shows a maximum shear stress,σ
pol
max = 0.67G0, at shear rate

γ̇1 = 2.6/τ . At higher strain rates, the shear stress is a decreasing function of flow rate
which corresponds to an unstable flow. The situation is saved (presumably) by a return to
increasing stresses at very high flow rates; such an upturn is inevitable, if only from the
contributionσ sol

αβ of the (Newtonian) solvent which we have been ignoring. We denote byγ̇2

the shear rate at whichσxy again equalsσmax ; for faster flows than this, stable behaviour is
recovered. The full stress versus strain rate curve, therefore, should have a local maximum
at some flow ratėγ1, followed by a minimum, and then rise again past the original maximum
when γ̇ = γ̇2 (figure 1). The actual behaviour of systems whose flow curve looks like this
remains a classical and largely unresolved area of non-Newtonian fluid mechanics [22].

Indeed, forγ̇1 < γ̇ < γ̇2, what happens in detail may depend on the precise mechanical
specification of the instrument. Typically a cone-and-plate rheometer is used, for which we
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might postulate [21, 23] that the observed shear stress obeysσ ≡ σxy = σmax throughout
this region. This is in excellent quantitative agreement with measurements of Rehage and
Hoffmann on CPyCl/NaSal (100 mM/60 mM) [15]. The prediction of a constant shear
stress arises if one assumes a ‘shear-banding instability’ where the system coexists between
the upper and lower shear rates in bands whose relative volume fractions are chosen to
match the imposed macroscopic shear rateγ̇ . There is, however, an additional assumption
involved: that of ‘top-jumping’ whereby one of the participating bands has a polymeric
stressσmax .

Although it seems consistent with the data of reference [15], the top-jumping scenario
is far from obvious. On the contrary [24] a recent numerical solution of the constitutive
equations in a parallel-plate geometry suggests instead that on increasing the shear rate, the
stress should rise to the maximum valueσmax but then, as the rate is increased further, drop
down onto a lower plateau and remain constant. (Similar predictions are obtained for some
simplified constitutive models which mimic the non-monotonic flow curve predicted for
micelles [24].) Such behaviour has recently been seen in some experiments when controlled-
strain-rate rather than controlled-stress machinery is used [25]. It is quite possible that the
original observation of an extended stress plateau atσ = σmax , under controlled-stress
conditions, is a result of very slow transients. In other words, the data measured along this
plateau do not truly correspond to steady-state conditions.

Further careful studies with different rheometric protocols and flow histories are now
under way, and the preliminary results [26] strongly suggest that the plateau previously
observed atσ = σmax is indeed not the true steady-state behaviour.

6. Outlook

The ultimate resolution of these issues will probably require more sophisticated experimental
probes to determine directly (rather than by its impact on the observed stresses) whether a
macroscopic flow is homogeneous or not. One promising direction is the introduction of the
birefringence microscope [27] which has been used to study an entangled micellar system
for which shear banding is expected (although in this case the high-shear branch,γ̇2, may
correspond to a metastable nematic mesophase). Using this technique, fairly clear evidence
for shear banding was found, albeit in a Couette geometry (a bright band is observed close
to the inner cylinder of the Couette). Actually in the materials used for this study [28], there
is a clear evolution of the observed stress plateau, with temperature and/or concentration,
from values near the theoretical (top-jumping) prediction,σmax = 0.67G0, to substantially
smaller values.

Another potentially vital probe is the direct measurement of flow profiles using NMR
imaging [25]. So far this has been used mainly in pipe flow geometries, where, theoretically,
there are additional hysteretic features associated with the spurt effect [29], because the shear
stress is not constant across the width of the pipe. These features additionally complicate
the interpretation of the data which at present cannot be said to support the shear-banding
scenario in any definite way [25]. However, there is certainly strong evidence of complex
and interesting behaviour at stresses larger thanG0. An interesting alternative to shear
banding, partly suggested by the NMR studies, is that of wall slip, in which very thin
layers of highly deformed material lubricate the walls of the rheometer. The difference
from the banding scenario is that these layers must, by definition, be directly altered in
their properties by the presence of the wall. When the flow curve is non-monotonic, as
predicted for entangled micelles, it is possible that theconstitutiveinstability (dσ/dγ̇ < 0)
is the trigger that makes wall slip occur.
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In the discussion so far we have tacitly assumed that the ‘upturn’ in the steady-shear
curve does indeed arise from the Newtonian solvent contribution. In fact, at least for the
system studied in [15], this is probably untrue, as is evident from the fact that an extremely
large, and steadily rising, first normal-stress difference is measured throughout the postulated
shear-banding regime (whereσ(γ̇ ) is apparently constant). This does not arise directly in
tube models but is predicted by some extensions of them. However, although the simplest
such extended model seems to give a good account of the normal-stress data [21, 23], efforts
to systematically improve it have tended to decrease the agreement [30]. This area remains
open for future experimental and theoretical work.
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